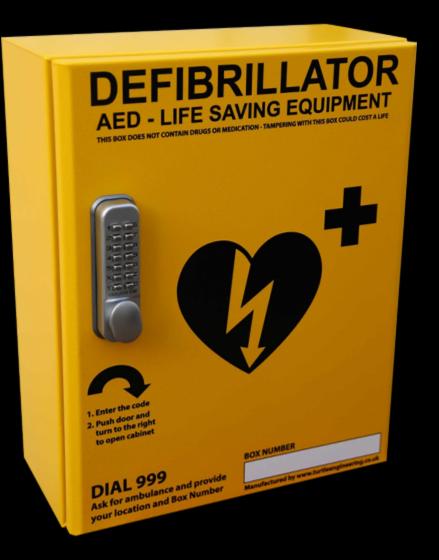
The Living Histogram-Making Marketing Statistics Exciting

Charlie Drehmer DePaul University

SOCIETY FOR MARKETING ADVANCES

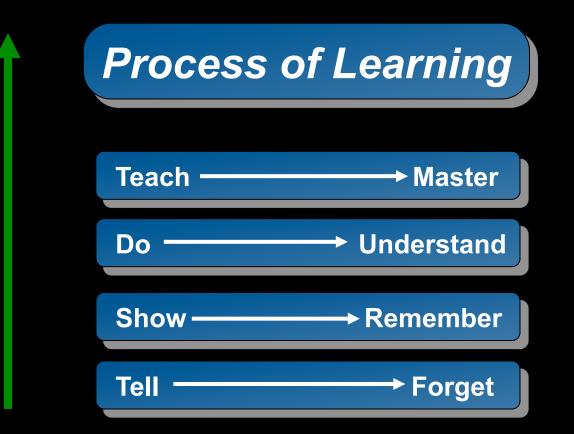
November 2016

< 10 10 12 > tour Soir -1 HERITAN ien? E= = + 1960, & . 15 H14>+E14> <4.1×14.7.1 [[= [= 1............] $\begin{array}{c} \Pi_{1}(I) = \int_{\mathbb{R}^{n}} \left(\frac{1}{2} \int_{\mathbb{R}^{n}} \int_$ (a:0) + (2) + $r:\frac{\alpha(A\cdot e^{1})}{(A\cdot r \cos Q)}$ $= \frac{d^{\prime}r}{dq^{\prime}} \left(\frac{1}{q^{\prime}} \right)^{-}$ 10000 $\begin{array}{c} 0 & V_{1} & 0 & 0 \\ 0 & 0 & V_{1} & 0 \\ 0 & 0 & V_{1} & 0 \end{array} = \left(\begin{array}{c} 1 & A & 0 \\ 0 & A & 0 \\ 0 & 0 & V_{1} & 0 \end{array} \right)^{-1} \left(\frac{A}{2} \right)^{-1$ $=\int \int \frac{d\theta}{\left(q^{2}-\theta^{2}\right)^{2}} \left[h_{min}\left[\frac{q^{2}}{q_{min}}\right] \frac{1}{q_{min}} h_{min}\left(\frac{q^{2}}{q_{min}}\right) A_{min}\left(\frac{q^{2}}{q_{min}}\right) A_{min}\left(\frac{q^{2}}{q_{min}}\right) \right]$ =-w'GH,H2+w'3' The test is the test to the test is the te x'sg' + 2'se'l' for Ja-(mt) -- nL'o nlo. unit X = 2-VE (1-VE) Y & a more to a three as free $l' = \frac{1}{(A - V'k')^{d_0}}$ $\hat{H} = 0^{4} \alpha + \frac{1}{2} \frac{1}{7} (\hat{\mathbf{x}} - i\hat{P}) (\hat{\mathbf{x}}_{1}, \hat{P}) \frac{1}{2}$ $\frac{1}{2m} \langle P' \rangle = -\frac{k^2}{2m} \int f_n^{*}(\mathbf{r}) \frac{d'}{d_n} f_n^{*}(\mathbf{r}) d\mathbf{x} = \pi \cdot \operatorname{Aria}(\operatorname{and} \cdot Q) \quad \forall : \operatorname{con} \operatorname{Bros}(\operatorname{and} \cdot Q) \quad \forall : -n(\operatorname{Aria}(\operatorname{and} \cdot Q)) = \operatorname{Aria}(\operatorname{and} \cdot Q)$ E Mer Es Mer Aller H= aat- + E= mc2 $\frac{1}{2t} \frac{\partial}{\partial t} \Psi(F; f) = -\frac{k^*}{2m} \Delta \Psi(F; f) + V(F; f) \Psi(F; f) = A \cos(\omega I + \frac{1}{2m}) - R \cos(\omega I) = \frac{1}{2m} \frac{\partial}{\partial t} \Psi(F; f) + V(F; f) \Psi(F; f) = \frac{1}{2m} \frac{\partial}{\partial t} \Psi(F; f) = \frac{1}{2m} \frac{\partial}{\partial t} \Psi(F; f) + \frac{1}{2m} \frac{\partial}{\partial t} \Psi(F; f) = \frac{1}{2m} \frac{\partial}{\partial t} \Psi(F; f) + \frac{1}{2m} \frac{\partial}{\partial t} \Psi(F; f) = \frac{1}{2m} \frac{\partial}{\partial t} \Psi(F; f) + \frac{1}{2m} \frac{\partial}{\partial t} \Psi(F; f) = \frac{1}{2m} \frac{\partial}{\partial t} \Psi(F; f) + \frac{1}{2m} \frac{\partial}{\partial t} \Psi(F; f) = \frac{1}{2m} \frac{\partial}{\partial t} \Psi(F; f) + \frac{1}{2m} \frac{\partial}{\partial t} \Psi(F; f) = \frac{1}{2m} \frac{\partial}{\partial t} \Psi(F; f) = \frac{1}{2m} \frac{\partial}{\partial t} \Psi(F; f) = \frac{1}{2m} \frac{\partial}{\partial t} \Psi(F; f) + \frac{1}{2m} \frac{\partial}{\partial t} \Psi(F; f) = \frac{1}{2m}$ E=p"e"+ H"c2 E= (r"e"+ H"c1) 2 at 140>= Vn++ 140.1> 1 alto) - faarlikens) - faleren allikens) - artiken arlage - 932 (1419.1) 37-1 Ka foren - foren (1419) $= \mathsf{M} c^{1} \left[\mathbf{A} \cdot \left(\frac{\mathbf{A}^{2}}{\mathsf{m}^{2} c^{2}} \right) \right]^{\frac{1}{2}} \qquad \sum_{i=1}^{n} \mathcal{E}_{i} = c^{i+1}$ $\lambda_1(R) + \lambda_1(R) \gg \lambda^2 \langle q_1| + \lambda^2 \langle q_2| \qquad \langle R \rangle = \frac{\int \lambda_1 d_1}{f_1} = \frac{\int \lambda_1 d_2}{f_1} = \frac{\int \lambda_1 d_2}{r_2 d_2} = \frac{\int \lambda_1$ o. a A farmar Bri E.E. #1. #4. = 1518-1> XIK.>=VIL for alle> E. CHO-CUD- for WIA. $\langle f_{n}^{(n)} | \psi \rangle = \langle f_{n}^{(n)} \rangle = \int_{-\infty}^{\infty} \int$ P1#>- Vote + (1-0)14.>



2

Anything is Possible


How do you create engagement?

How do you create engagement?

How do you create engagement?

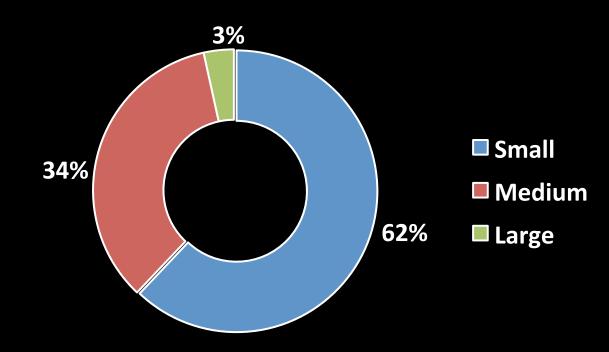
How many shirts should we order?

Depaul MKT 202

How tall are MKT 202 students?


How tall are MKT 202 students?

Let's construct a living histogram



MKT 202 Student Heights

Height in Inches

Depaul MKT 202

MKT 202 Shirt Sizes

2

Anything is Possible

Anything is Possible